6 research outputs found

    On explosive boiling of a multicomponent Leidenfrost drop

    Get PDF
    The gasification of multicomponent fuel drops is relevant in various energy-related technologies. An interesting phenomenon associated with this process is the self-induced explosion of the drop, producing a multitude of smaller secondary droplets, which promotes overall fuel atomization and, consequently, improves the combustion efficiency and reduces emissions of liquid-fueled engines. Here, we study a unique explosive gasification process of a tricomponent droplet consisting of water, ethanol, and oil ("ouzo"), by high-speed monitoring of the entire gasification event taking place in the well-controlled, levitated Leidenfrost state over a superheated plate. It is observed that the preferential evaporation of the most volatile component, ethanol, triggers nucleation of the oil microdroplets/nanodroplets in the remaining drop, which, consequently, becomes an opaque oil-in-water microemulsion. The tiny oil droplets subsequently coalesce into a large one, which, in turn, wraps around the remnant water. Because of the encapsulating oil layer, the droplet can no longer produce enough vapor for its levitation, and, thus, falls and contacts the superheated surface. The direct thermal contact leads to vapor bubble formation inside the drop and consequently drop explosion in the final stage.Comment: 8 pages, 5 figure

    Universal thermal response of the multiscale nanodomains formed in trans-anethol/ethanol/water surfactant-free microemulsion

    Full text link
    Hypothesis: Surfactant-free microemulsion (SFME), an emerging phenomenology that occurs in the monophasic zone of a broad category of ternary mixtures 'hydrophobe/hydrotrope/water', has attracted extensive interests due to their unique physicochemical properties. The potential of this kind of ternary fluid for solubilization and drug delivery make them promising candidates in many industrial scenarios. Experiments: Here the thermodynamic behavior of these multiscale nanodomains formed in the ternary trans-anethol/ethanol/water system over a wide range of temperatures is explored. The macroscopic physical properties of the ternary solutions are characterized, with revealing the temperature dependence of refractive index and dynamic viscosity. Findings: With increasing temperature, the ternary system shows extended areas in the monophasic zone. We demonstrate that the phase behavior and the multiscale nanodomains formed in the monophasic zone can be precisely and reversibly tuned by altering the temperature. Increasing temperature can destroy the stability of the multiscale nanodomains in equilibrium, with an exponential decay in the scattering light intensity. Nevertheless, molecular-scale aggregates and mesoscopic droplets exhibit significantly different response behaviors to temperature stimuli. The temperature-sensitive nature of the ternary SFME system provides a crucial step forward exploring and industrializing its stability

    Cytoplasmic Lipid Droplets Are Sites of Convergence of Proteasomal and Autophagic Degradation of Apolipoprotein B

    No full text
    Lipid esters stored in cytoplasmic lipid droplets (CLDs) of hepatocytes are used to synthesize very low-density lipoproteins (VLDLs), into which apolipoprotein B (ApoB) is integrated cotranslationally. In the present study, by using Huh7 cells, derived from human hepatoma and competent for VLDL secretion, we found that ApoB is highly concentrated around CLDs to make “ApoB-crescents.” ApoB-crescents were seen in <10% of Huh7 cells under normal conditions, but the ratio increased to nearly 50% after 12 h of proteasomal inhibition by N-acetyl-l-leucinyl-l-leucinyl-l-norleucinal. Electron microscopy showed ApoB to be localized to a cluster of electron-lucent particles 50–100 nm in diameter adhering to CLDs. ApoB, proteasome subunits, and ubiquitinated proteins were detected in the CLD fraction, and this ApoB was ubiquitinated. Interestingly, proteasome inhibition also caused increases in autophagic vacuoles and ApoB in lysosomes. ApoB-crescents began to decrease after 12–24 h of proteasomal inhibition, but the decrease was blocked by an autophagy inhibitor, 3-methyladenine. Inhibition of autophagy alone caused an increase in ApoB-crescents. These observations indicate that both proteasomal and autophagy/lysosomal degradation of ApoB occur around CLDs and that the CLD surface functions as a unique platform for convergence of the two pathways
    corecore